NASA MARSHALL SPACE FLIGHT CENTER

Simulink Code Generation

Tutorial for generating C code from Simulink
Models using Simulink Coder

José Carlos Molina Fraticelli
4/25/2012

Contents

3 10T [0 Tod o] o ISR PP 3
2. Good Programming Practices in SIMUIINKccooiiiiiieee e s 4
3. ChooSing Variable Data TYPES.......cucueierierieiiiiesiieieeee ettt 6
4. Hardware Implementation data type information............cccccevviieii i 7
5. NAMING STANGAIAS.cceeiieeieiieie e e et esteeaesreesreeaeaneenreens 7
6. Creation of practice model for code generationcocveririiiniinieiese e 8
7. Preparing practice model for code generation...........ccoceoeieiiniienisiseeeee e 17
8. Compiling and Executing generated COUEcuuiuiriririririsieiee e 29
9. Comparing output of MATLAB with that of the generated codecccoccvvvevvereiininenen. 36
R E (=T =] 0TSSP 37

Appendix A Hardware Implementation Table............cocoiiiiiiie s 38

1. Introduction

This document explains all the necessary steps in order to generate optimized C code from
Simulink (Ref. [2]) Models. This document also covers some general information on good
programming practices, selection of variable types, how to organize models and subsystems, and
finally how to test the generated C code and compare it with data from MATLAB (Ref. [1]).

(NOTE: This guide was prepared using MATLAB/Simulink Ver. R2011b (Ref. [1]).)

2. Good Programming Practices in Simulink
Below are some guidelines to follow when creating Simulink (Ref. [2]) Models:

e Create bus objects for subsystems with many outputs and inputs. It makes organizing a
model simpler by requiring less cabling and also makes management of the data
contained in the bus easier when debugging as errors usually show up in a single location.

e Avoid using Mux blocks to create Bus signals. Always use a Bus Creator blocks.

e Avoid Crossing Cables when possible: There are a variety of ways to avoid crossing
cables which can make debugging Simulink (Ref. [2]) models complicated. Some of
these include: Organizing Subsystem Inputs to match cabling going into the subsystem,
Goto and From blocks, Bus Creator blocks, Bus Selector blocks, among others.

e Determine variable types ahead of time. Simulink (Ref. [2]) defaults all data types to 64-
bit doubles by default. This can sometimes be a problem for code generation as not all
targets can support these types of variables and it can be hard to change these once a
model is created. This will save a lot of time trying to find problematic typecasts.

e Use MATLAB (Ref. [1]) structures when working with Bus Signals.
e Determine whether a model is a sub-function or a subsystem.

e Avoid Algebraic Loops. They are problematic for code generation as stated by
Mathworks. If the algebraic loop cannot be avoided use a Unit Delay Block to break up
the loop. (NOTE: Verify that adding this block has not changed the output of the model.)

e Avoid using different sampling times between models. This is not supported by code
generation.

e Avoid using variable-step solvers. The only valid solver for code generation is the Fixed
Step Solver with a discrete time step.

e Build models from the ground up with code generation in mind.

e Test models as a standalone piece both in simulation and in the generated code and
ensure it is working before adding additional models.

e Auvoid using equal names for buses, data, constants and models. This can cause serious
problems with code generation. Use a naming standard to clearly define what every
object is or isn’t.

e Rename models such as “Foo One Model”; to Foo_One_Model. This will help avoid
problems with code generation.

If a model name is too long try shortening it. Model names should not exceed 20
characters.

Align models and objects that are part of the model using the alignment tools available in
Simulink (Ref. [2]) these can be accessed by selecting two or more model objects and
selecting align blocks. This can help clean up models immensely

Make sure the warning indicator on MATLAB (Ref. [1]) function blocks is green. Try to
fix all warnings pointed to by this indicator. Also always add the %#codegen pragma
directive below the function name declaration and before any code.

Don’t use Goto and From blocks between different models. Use a signal line instead.

Avoid the use of extremely memory intensive blocks such as ‘Fuzzy Logic controllers’ if
generating code for embedded platforms such as microcontrollers; as the generated code
will not fit in the stack due to the high amount of floating point variables required.

Avoid excessive unnecessary variables. Memory is at a premium in embedded hardware
as opposed to a desktop computer.

Use consistent signal names. This can help ease debugging immensely.

Align all inputs to the left of the model and all outputs to the right of the model. This can
help find problematic inputs/outputs faster.

3. Choosing Variable Data Types

In order to determine the correct data type for a variable one must determine what that variable
will be used for. Simulink (Ref. [2]), by default, will generate all variables as 64-bit doubles.
This can cause problems for embedded platforms with a low memory footprint such as
microcontrollers which is where generated code is usually targeted to. Below are some tips in
order to determine which variable type is viable for each action:

e boolean: If the variable is to be used as a ON/OFF switch then this variable type should
be used

e int8: If the variable does not exceed 8 bits and is a character then this variable type
should be used

e intl6: If the variable does not exceed 16 bits and is an integer then this variable data type
should be used

e int32: If the variable does not exceed 32 bits and is an integer then this variable data type
should be used

e single: If the variable is a single precision floating point number then this variable data
type should be used

e double: If the variable is a double precision floating point number then this variable data
type should be used. (NOTE: This is the default variable type for Simulink (Ref. [2]))

e |f the variables to be defined contain many elements then a structure must be created to
house these elements. A Bus must be created from said structure and then used as the
data type of the variable.

4. Hardware Implementation data type information

Below is a table listing device specific information for Hardware Implementation of the
Simulation and Generated code. This information is set in the Hardware Implementation pane
located in the Simulation Configuration Parameters:

Device Number of bits Largest atomic size Byte Rounds Shift
vend_or / char short int long native int float ordering 0 right
Device

type

ARM Compatible

ARM 8 16 32 |32 32 Long Float X X X
7/8/9/10

Microchip

dsPIC 8 16 16 |32 16 X X Little Endian | Zero Set

Texas Instruments

MSP430 8 |16 |16 |32 16 X X | Little Zero Set
Endian

Table 1: Hardware Implementation Partial
(NOTE: For a complete Hardware Implementation table refer to Appendix A.)

5. Naming Standards

To remain consistent on which object is what, and also to make debugging of problems easier, it
IS important to establish a naming standard. This naming standard must be applied to models,
constants, variables and buses. An example of this standard is listed below and can be used as is
or with some modifications if required:

e |f the object in question is a model then the name of that model should be in the form of:
“Name_Model”

e If the object in question is a constant then the name of that constant should be in the form
of: “Name_Constant”

e |f the object in question is a bus then the name of that bus should be in the form of:
“Name_Bus”

If the object in question is a signal then the name of that signal should be in the form of:
“Name_Signal”

e |f the object in question is a function then the name of that signal should be in the form
of: “Name_Func”

e |f the object in question is a subsystem input then the name of that input should be in the
form of: "Name_Input"

e If the object in question is a subsystem input then the name of that input should be in the
form of: "Name_Output™"

6. Creation of practice model for code generation

In this section a new practice model will be created in order to demonstrate the necessary steps to
do successful code generation from any Simulink (Ref. [2]) model.

Open up MATLAB (Ref. [1]) and type the ‘buseditor’ command on the command window in
order to access the Bus Editor.

Command Window + 0 A X

"?‘ Mew to MATLAB? Watch this Video, see Demos, or read Getting Started.

ﬁ}; »» buseditor

Bus Editor GUI:

EBUS Editor - Manage Bus Objects in the Base Workspace

File Edit Wiew ©Options Help

-zt 3 |[] = | g 2 Fi\ter:lbyBusNama |

Ready

Once here click on File > Add Bus, (or alternatively Ctrl+B), while having the Base Workspace
selected. A new Bus Object will be created in the MATLAB (Ref. [1]) workspace. Rename this
Bus Object to Inputs by modifying the Name Field in the Bus Editor:

Simulink.Bus: Inputs

Properties

Name: Inputs

Code generation options

DataScope: |Auto -

HeaderFile:

Alignment: -1

Description:

Click Apply at the bottom of this window.

Now add two new elements to this Bus by going to File>Add/Insert Element (or alternatively
Ctrl+E) while having this Bus Object selected. These elements will be called Input_A and
Input_B respectively and will be of type int32:

Simulink.BusElement: Input_#A

—Properties

MName: IInput_A

DataType: Iint32 LI < |
Data Type Assistant

’7Mode: |Built in j |int32 LIData type override: | Inherit j
IMirirnurn: I[]

Macirurm: I[]

Complexity: Ireal LI
Dimensions: |1

Dimensionsiode: IFixed j
SamplingMode: ISampIe based j
SampleTime: |-1

Now repeat the previous process for the Outputs Bus but this time add five elements sum of type
int32, sub of type int32, mul of type int32, div of type double, and sum_gain of type int32. Once
finished the Bus Editor Window should contain the following objects:

| EBUS Editor - Manage Bus Objects in the Base Workspace

. File Edit Wiew Options Help
P il |'§ -zt 3 |[] FH | EENE= T FiIter:IbyBusName

- = Input_A
- = Input_E
Oubputs
— um
sub
, —
o — sum_gain

Go back to the workspace and write the following command in the command window: ‘gain =
int32(1)’. You should see the following now:

[Eommand Window

'f?’ Mew to MATLABT Watch this Yideo, see Demos, or read Getting Started.

*» gain = int3zZ (1)

gain =

fe >

Now that the workspace contains all necessary bus objects and variables with their defined data
types proceed to create a new model for Simulink (Ref. [2]) by going to File>New>Model at the
top toolbar:

J MATLAE R2011b

File Edit Debug Parallel Desktop Window Help

Mew] Scripk kel
QpeEr, ., Chr+i Function
Close Command YWindow CErH-t Class
Enurnerakion
Impork Data, ..
Figure
Save Wiorkspace As. .. Chrl+5
Yariable
Set Path... Model |
Preferences. .. (el
Page Setup... Deployment Project. ..
Print. .. Ckrl+P Code Generation Project. ..
Frint Seleckian, .. Sirnulink, Project. ..
1D, . TSAT_ERT\driveSTE.m
2 2, ibrary_FaWbusDef.m
34, ro_modiInDataFile. m
4 .. _mod\Cubesat_init.m
Exit MATLAE Chrl+0
|| 4| Sum_sFun.mexw3z
Now this new model should be open:
=10l x|

File Edit View Simulation Format Tools Help

DS E&| %2R | 4= » =foo |[nom =

Ready [100% [ode4s 4

Bring up the Simulink (Ref. [2]) Library Browser and add the following blocks to the model:

e 3 Bus Creator Blocks

e 3 Constant Blocks

e 7 Bus Selector Blocks

e 2 Display Blocks

e 5 MATLAB (Ref. [1]) Function Blocks
e 1 Model Info Block

Once these are added to the model organize them in the following manner:

MATLAB Functiond

Madal Infa
sum
RATLAB Function
1 EpH
-
fon
MATLAB Funstiont
| == 4 |
E’H >|u 4 v o PE—>
- mul Bus_Outpits i P 14|
“sum_gains
MATLAB Function2
Display
| I N
fon
MATLAB Function? I
e ':l
Displayt
aain

Make sure that the Output data types of the Input_A, Input_B and gain constants are of type
int32. (NOTE: Set the gain constant value to ‘gain’)

Open the first of the MATLAB (Ref. [1]) Function blocks and write the following code inside:

sum_func:
EE MATLAB Function Block Editor - Block: CodegenT_Ma) [m] [
File Edit Text Debug Tools Window Help |?| =
NCH|[fRRY C MOt [SE| 0
1 function sum = swn Func {Input 4, Input Ej U
2 tHcodegen
g|= sum = int3Z (Input_A+Input B):
4

| Ready | Ln 4 Cal 1 Y

For the next four blocks write the following code in order from top to bottom:

sub_func:

mul_func:

div_func:

% MATLAE Function Block Editor - Block: CodegenT Madelsuby - |I:I|i|
File Edit Text Debug Tools Window Help |?| =
NCH|+RRIC AEEO ¢S > =]
1 function suwbh = sub Func {Input 4, Input Ej U
2 tHcodegen
g|= sub = int3Z (Input_A-Tnput_ Bjf
4
| Ready Ln 3 Col 29 y
% MATLAB Function Block Editor - Block: CodegenT_Model/mu - |EI|5|
File Edit Text Debug Tools Window Help |?l x
DO sRBmo e ADEO S8 0]
1 function mul = mwul Func (Input A, Input_ E) u
z Hcodegen
3= mul = int3Z(Input A*Input B):
4
|Ready Lm 1 Col 1 4
% MATLAE Function Block Editor - Block: CodegenT_Model div - |I:I|5|
File Edit Text Debug Tools ‘Window Help |?| =
NSH|sBRICADEO ¢S] »[0
1 function div= div func{Input i, Input E) U
zZ tHcodegen
Si= div = double(Input_A4] Jdouble [Input_BE):
4
% mul_Func = | sum_gain_Func xlldiv_Func x|
|Ready |Ln 1 Col 1 4

sum_gain_func:

% MATLAB Function Block Editor - Block: CodegenT |
File Edit Text Debug Tools ‘Window Help

=101 x|

| a x

T L . . e o
DS E|% & SN W= RN N O =]
1 I:Euncticnn Sum gain= suw gain funciInput A, Input_B,gaiE|
z $#oodegen
Si= Sum gain = int3Z (Input_A+Input_ E+gain) ;
4
Kl i
|Ready L 1 Cal 4
Connect the model as shown below:
o] <Input_% g -A‘\ sum Model Info
TR P ineetH Fune sum
sum_Fune
I [
Mpot] < INput_5 i i
" <Input_B> B Ined Fune sub
sub_Fune
1
4 - I -
npt_A : Bus_Input Py R :.P,_ 4 Tl s Gt » s L
Input_é el Bus_Inputs TR P Inpd B Func pf BusPupas :33L>ﬂain>
mul_Func
2
. Input_B ot £ Display
Input_B pr <Input_2> i Y -
<Input_B> B Inesif_fune "
div_F
R <lnput_# B input_A . rI e P
Ll — Input_h‘\n_galn - Display1
g4 _gain_func sum_gain

<Input_B>

gain

(NOTE: Make sure the First Bus Creator on the left has a data type of ‘Bus: Inputs’ and that the
following Bus Creator to the right has a datatype of ‘Bus: Outputs’ as can be seen on the above.
Also be sure to label all signal cables with their corresponding names)

sum_gain_Fune

Configure the Model Info Block with the following tokens then click Apply and OK:

) Model Info: untitled =10l x|
hodel properties: Enter text and tokens to display on Model Info block:
il il [mModel Info ;I
o eeCresteds=
haodified Comment S=Creators
hoclel ersion Y=MadifiedBy=
Model Name % <ModifiedDates
Description 3h«ModifiedComment=
Last Modified By Fahlodelversion=
Last Madificstion Date - S=hodeMames
) : - Y=Description=
CanfiguraEtion manager properties:
5 G e 2 asthiodifiedBy=
] = YL astModificationDates
=l hd
Hotizortal text alignmendt: Icenter j W Showe block frame
Ok, | Cancel | Helg | Appaly I

Run the model and look at the output seen on the display block; if the Input Constant values of
Input_A and Input_B are set to 1 and 2 respectively then the output of the simulation should be
um = 3, sub = —1, mul = 2, SuMgqin = 4 and div = 0.5:

Drisplay

05

¥

Dizplay

Select this section of the model and right click it. Afterwards select Create Subsystem from the
popup menu:

<lmput_A=

<|mput_B=

<lmput_A=

<Input_B=

<lmput_A=

>i Bus_lnputs

The model should now look as follows. Save this model as CodegenT_Model:

: '—}Ir'
ThpuLA
P Outt

Input_A

Input_B

In2
2 Subsystem
s S

<|mput_B=

<lmput_A=

<Input_B=

<lmput_A=

<lmput_B=

gain

gain

Input_A&

‘II. SN

Incet® Fune =um

sum_Func

Imiput_A
L sub

Ineyb® Func

sub_Func

Input_A&
il

i
Ineb® Fune mud

mul_Func

Imiput_A
diiv

Inpuif func e

div_Func

Imiput_A&

Imipurt_Effhm_gain -
put_Efhm_g Sum_gain

guin_gain_func

sum_gain_Func

Medel Info
Tue Apr 03 08:31:45 2012
jemolina
Jose
Tue Apr 10 21:27:32 2012
117
CodegenT_Model

jemelina
05-Apr-2012 18:13:12

1

Cisplay

—

Display1

7. Preparing practice model for code generation

Now that the CodegenT_Model is finished and running it is time to prepare it for code
generation. To start right click on the Subsystem Model and select Subsystem Parameters:

o =)

E Function Block Parameters: Subsystemn @
Subsystem

Select the settings for the subsystem block. To enable parameters on the
Code Generation tab, on the Main tab, select 'Treat as atomic unit'.

Main Code Generation |

Show port labels IFromPnrtlcon 'J

Fead/Write permissions: IReadWrite - J

MName of error callback function:

Permit hierarchical resolution: |All -

[Treat as atomic unit

u | ok || cancel || Help Apply

- o
<div> !

Display1

Check the box that is labeled "Treat as atomic unit"; click Apply then OK. This will change the
borders of the Subsystem to a bold line indicating that the system is now atomic and will execute
as a single unit inside the simulation. Systems must be atomic in order to be generated as re-
usable C functions using Real-Time Workshop. The Subsystem model should now look as
follows (NOTE: Changing a Subsystem to an atomic representation can change simulation
output; always verify that the simulation is still working before generating code from it.):

S

—|inz

Subsystem

Rename the Subsystem model to Calc_Test_Model:

-
— iz

Calg_Test_Model

Once again right click on the model and open the Subsystem Parameters, go to the Code
Generation Tab which is enabled when the Subsystem is declared as atomic and choose the
"Reusable Function™ option on the "Function packaging™ dropdown list. Afterwards two more
dropdown lists will appear "Function name options” and "File name options"; For the first
dropdown list choose "User Specified" and write the following name in the provided text space
"calc_functions”. Afterwards choose the "Use function name™ option for the "File name options”
dropdown list. Finally click Apply then OK to close the subsystem parameters:

e =

E Function Block Parameters: Calc_Test_Maodel @
Subsystem

Select the settings for the subsystem block. To enable parameters on the
Code Generation tab, on the Main tab, select Treat as atomic unit'.

Main Code Generation

Function packaging: [Reusable function v]

Function name options: [L.Iser specified v]

Function name:

calc_functiunsi

File name options: [Llse function name h

_} oK H Cancel H Help H Apply

Next go to the top toolbar in Simulink (Ref.

Parameters. The following window will open:

[2]) and click on Simulation > Configuration

Select:

- Solver

~Data Import/Export

- Optimization

+- Diagnostics

-Hardware Implementation
~Model Referencing

- Simulation Target

- Code Generation

I B

oo [

4

9

Eﬁp Configuration Parameters: CodegenT_Model/Configuration (Active)

Simulation time

Start time: | 0.0|

Solver options

Type: [Variable—step

¥ | Solver:

Max step size: auto
Min step size: auto

Initial step size: auto

Number of consecutive min steps:

Tasking and sample time options

Tasking mode for periodic sample times:

[T Automatically handle rate transition for data transfer

[T Higher priority value indicates higher task priority

Zero-crossing options

Stop time: 10.0

[ode45 (Dormand-Prince)

Relative tolerance: 1le-3

Absolute tolerance: auto

Shape preservation: | Disable all

1

Auto

Zero-crossing control: ’Use local settings

'] Algorithm:

Nonadaptive

Time tolerance: 10%128%eps

m

Signal threshold: |auto

[OK H Cancel H Help

==

m

L

Apply

These are all the available properties for the simulation. For code generation only some of these

properties need to be modified. To start off set the Solver pane options as shown below:

5%“;9 Configuration Parameters: CodegenT_Model/Configuration (Active)

Select:

- Solver

- Data Import/Export
+-Optimization
:--Diagnostics

i-Hardware Implementation
~Model Referencing
+-Simulation Target

+-Code Generation

Simulation time

Start time: 0.0

Solver options

Stop time: inf

Type: ’ Fixed-step

'l Solver: ’discrete (no continuous states)

Fixed-step size (fundamental sample time):

Tasking and sample time options
Periodic sample time constraint:

Tasking mode for periodic sample times:

1

[Unconstrained

[Auto

[C] Automatically handle rate transition for data transfer

[T Higher priority value indicates higher task priority

Next in Data Import/Export pane change the signal logging name to BusData (NOTE: Signal
logging can be used for debugging and generating files from simulation output data):

5{;}9 Configuration Parameters: CodegenT_Model/Configuration (Active) @

Select: Load from workspace

Solver [C] Input: It, ul
Data Import/Export
-Optimization [7] mitial state: | xInitial
-Diagnostics
Hardware Implementation Save to workspace

Model Referencing Time, State, Output
-Simulation Target

e[

T

+-Code Generation Time: tout Format: Array ~ =
[7] states: xout Limit data points to last: 1000
Output: yout Decimation: 1
[C] Final states: |xFinal Save complete SimState in final state
Signals

Signal logging: BusDatal Signal logging format: |ModelDatalLogs ~

’ Configure Signals to Log...]

Data Store Memory

Data stores: dsmout

For the Optimization pane change the Application lifespan setting to inf:

% Configuration Parameters: CodegenT_Model/Configuration (Active) @
Salect: Simulation and code generation '
iSolver Block reduction Conditional input branch execution

Data Import/Export
B8 Optimization Implement logic signals as Boolean data (vs. double) Application lifespan (days) inf
+I- Diagnostics

9) [7] use integer division to handle net slopes that are reciprocals of integers

Hardware Implementation

Madel Referencing [7] use floating-point multiplication to handle net slope corrections
+-Simulation Target
+-Code Generation Code generation =

Data initialization

Use memset to initialize floats and doubles to 0.0

Integer and fixed-point
[C] Remove code from floating-point to integer conversions that wraps out-of-range values

Remove code from floating-point to integer conversions with saturation that maps MaM to zero

Accelerating simulations

Compiler optimization level: | Optimizations off (faster builds) A

["] Verbose accelerator builds

Jump over to the Hardware Implementation pane and set the settings of this pane as outlined in
Table 1 based on the Hardware for which the code will be generated (NOTE: For this example
Unspecified (32-bit generic) will be used):

% Configuration Parameters: CodegenT_Model/Configuration (Active)

Select:

- Solver

i~ Data Import/Export
+-Optimization

: Diagnostics

Model Referencing
+-Simulation Target
+I-Code Generation

Embedded hardware (simulation and code generation)

=

-

Device vendor: ’Generic

'] Device type: ’Unspeciﬁed (assume 32-bit Generic) ']

Number of bits

char: 8 short: 16 int:
lang: 32 float: 32 double:
native: |32 pointer: | 32

Byte ordering: | Unspecified

Shift right on a signed integer as arithmetic shift

Emulation hardware (code generation only)

MNone

Largest atomic size

32
integer:

64
floating-point:

[Char

7

[None

7

m

Signed integer division rounds to: | Undefined hd

Go to the Code Generation Pane and select the following options:

% Configuration Parameters: CodegenT_Model/Configuration (Active)

Select:

- Solver

‘Data Import/Export

+- Optimization

: -Diagnostics

-Hardware Implementation
"Model Referencing

+- Simulation Target

-I-Code Generation

- Report

- Comments

- Symbols

- Custom Code

""Debug

- Interface

- SIL and PIL Verification
- Code Style

- Templates

- Code Placement

- Data Type Replacem...
- Memory Sections

Target selection

System target file: ert.tlc

Language: 5

Description:

Build process

Embedded Coder

Compiler optimization level: |Optimizations off (faster builds) ']

TLC options:
Makefile configuration
Generate makefile
Make command:

Template makefile:

Data specification override

make_rtw

ert_default_tmf

[”] 1gnare custom storage classes

Code Generation Advisor

[7] 1gnore test point signals

Prioritized objectives: Execution efficiency, ROM efficiency, RAM efficiency, ...

Set objectives ...

Check model before generating code: ’C}n (stop for warnings)

Generate code only

'] ’ Check model ...]

’ Generate code

m

Set Objectives Pop-Up to the desired objectives:

I

E Set Objectives - Code Generation Advisor @
Description

Select and prioritize your code generation objectives. You can add custom
objectives, for details, see the documentation.

Available objectives Selected objectives - prioritized

Debugging Execution efficiency
MISRA-C:2004 guidelines —1 | ROM efficiency

I

= FaM efficiency

bili
T Traceability

Safety precaution

[«

I oK H Cancel H Help I

Make sure to select the correct target file based on the desired target. For this example ert.tlc
Embedded Coder will be used.

Select the Report Pane and set the following options:

%% Configuration Parameters: CodegenT_Model/Configuration (Active) @
Select: Create code generation report Launch report automatically i
é""SoIver Navigation
+ g[aji;ianfs:t?ifapor‘t Code-to-model
1 Diagnostics [C] Modelto-code | Configure
i~ Hardware Implementation
é""MUdﬂ Referencing Traceability Report Contents
+

-Simulation Target
-I-Code Generation

m

[7] Eliminated / virtual blocks

~Report [7] Traceable Simulink blocks

- Comments i

- Symbols [7] Traceable Stateflow objects
- Custom Code [T Traceable MATLAB functions
- Debug

- Interface Metrics

- 511 and PIL Verification [Static code metrics

- Code Style

- Templates

- Code Placement
--Data Type Replacem...
- Memory Sections

J ok | [cancel |[Help |[apply

Go to the Interface pane and select the following options:

Select:

~Solver

-Data Import/Export

+- Optimization

+- Diagnostics

-Hardware Implementation
~Model Referencing
+-Simulation Target

-i-Code Generation

- Report

- Comments

- Symbols

- Custom Code

""DEhUg

- Interface

- S1L and PIL Verification
- Code Style

- Templates

- Code Placement

- Data Type Replacem...
- Memory Sections

% Configuration Parameters: CodegenT_Meodel/Configuration (Active)

Software environment

Target function library: [CSQ{CQU (ANST)

'] [Custom...

Shared code placement: [Auto

7]

Support: V| floating-point numbers non-finite numbers

absolute time [7] continuous time

[7] variable-size signals

Multiword type definitions: [S'_.rstem defined

Code interface

complex numbers

|| non-inlined S-functions

[T] GRT compatible call interface Single output/update function [_| Terminate function required

Generate reusable code

Reusable code error diagnostic: ’Error

Pass root-level I/O as: [Individual arguments ']

Generate preprocessor conditionals: [Use local settings

[T] Suppress error status in real-time model data structure

[Configure Model Functions]

Data exchange

[T] maT-file logging

[T] combine signal/state structures

Make sure the "Generate reusable code™ checkbox is checked in this pane.

m

Go to the Code Style pane and check all checkboxes. This is done to set the coding style as
humanly readable as possible for code generation:

% Configuration Parameters: CodegenT_Model/Configuration (Active)

Select:

-~ Solver

Data Import/Export
-Optimization

-Diagnostics

Hardware Implementation
Model Referencing
-Simulation Target

-Code Generation

- Report

- Comments

- Symbols

- Custom Code

Debug

- Interface

- SIL and PIL Verification
- Code Style

- Templates

- Code Placement

- Data Type Replacem...
~Memory Sections

i

T

Code Style

Parentheses level: ’Nominal (Optimize for readability)

Preserve operand order in expression
Preserve condition expression in if statement
Convert if-elseif-else patterns to switch-case statements

Preserve extern keyword in function declarations

Suppress generation of default cases for Stateflow switch statements if unreachable

m

Next go to the Templates pane and set the following options:

% Configuration Parameters: CodegenT_Meodel/Configuration (Active) @
Select: Code templates -
i~ Solver

Source file (*.c) template: ert_code_template.cgt

Data Import/Export
%--Optimization Header file (*.h) template: ert_code_template.cgt
%--Diagnostics
i~ Hardware Implementation Data templates
i~Model Referencing
E--Simulation Target

Source file (*.c) template: ert_code_template.cgt

m

= Code Generation Header file (*.h) template: ert_code_template.cgt
- Report
 Comments Custom templates
- Symbols
- Custom Code File customization template: example_file_process.tic
" Debug Generate an example main program
- Interface
- SIL and PIL Verification Target operating system: BareBoardExample v]
- Code Style

- Code Placement
- Data Type Replacem...
- Memaory Sections

2 [ok || cancel |[nelp || apply |

In this pane source code generation templates may be selected. This requires advanced
knowledge of tlc language. Information on tlc language and files can be found in the MATLAB
(Ref. [1]) help window.

Once again return to the Code Generation pane; click Apply then click the generate code button.
A model check procedure will now start to verify that all settings are correct for code generation:

E Code Generation Advisor - CodegenT_Model EI@
File Edit Run View Help
Find: name and description - ﬁ ‘WJ;
Code tion Objectives

4 @ Code Generation Objectives
/i\, Check model configuration settings ag Model Advisor n:
0 Identify unconnected lines, input ports Analysis
0 Check for optimal bus virtuality Code Generation Objectives
& Check Data Store Memory blocks for m
o *ldentify block output signals with con
0 Identify questionable blocks within the
/M Check the hardware implementation
& Identify questionable software environ

[T Show report after run

m

Report
o Identify questionable code instrumentg

0 Check for blocks that have constraints Report: «.\report 402.html
Ay ~Identify questionable subsystem setti Date/Time: 10-Apr-2012 22:08:37

a i i
& Identify blocks that generate expensi Summary: o Pass: 8 0 Fail: 0 fi\, Warning: & [=] MotRum: 0
o *ldentify questionable fixed-point ope

o Check for efficiency optimization param Tips

To process all enabled items in this folder and generate a new report, dick "Run Selected Checks™
Right-click to select or deselect all items in this folder.

To automatically display the report after processing, select “Show repart after run™,

To display the last report generated, dick the "Report” path link. -

_

1 [m v

Model Explorer initialized

Select the first warning symbol on the top of the Code Generation Objectives list and then click
on Modify Parameters:

wd: name and description - A

Check model configuration settings against code generation objectives
@ Code Generation Objectives

-
& Check model configuration setting |-
. . . The following parameter values are not optimized for the selected objectives: Execution effidency, ROM

0 Identify unconnected lines, input p effidency, RAM effidency, Traceability, Safety precaution,
o Check for optimal bus virtuality =
M Check Data Store Memary blocks for m To automatically fix the warning, dick the Modify Parameters' button and then rerun the check, To manually fix
o Aldentify block output signals with the warning, dick the parameter hyperlink to open the Configuration Parameters dialog box, and manually

entity block output signals with car apply the recommended value,

0 Identify questionable blocks within the (Objectives: Execution effidency, ROM effidency, RAM effidency, Traceability, Safety precaution)
/M Check the hardware implementation [Parameter [current value |Recommended value
& Identify questionable software environ Euggress error status in real-time model data structure bFF bn =
o Identify questionable code instruments pon-finite numbers an eff
@ Check for blocks that have constraints Compiler optimization level off en
Ay Aldentify questionable subsystem setti Minimize data copies between local and alobal variables off on
& Aldentify blocks that generate expensi i:“mw - - - - bﬂ: bn | M
0 Aldentify questionable fixed-point ape emove code from floating-point to integer conversions that bf'f bn =
o Check for efficiency optimization param

Action

Change current values to recommended value. Seme parameters might require manual changes.

Modify Parameters

This will set the conflicting parameters to the correct settings for code generation. Once this is
done click on Run This Check will in the same window:

Check model configuration settings against code generation objectives

@ Code Generation Objectives }
Analysis

'0 Check model configuration setting

o Identify unconnected lines, input p Cheu_:k m_odel ;onﬁgyrah’on settings against i_he code_ generation obje_ch'ves. Successfully passing this check may take
multiple iterations since a change to one option can impact other options.
0 Check for optimal bus virtuality

& Check Data Store Memory blocks fo Run This Check

'0 Aldentify block output signals with
0 Identify questionable blocks within
& Check the hardware implementatio
& Identify questionable software enwvi

»

m

Result: @ Passed

| »

o Identify questionable code instrum ?SEJS':EﬁVES: Execution efficency, ROM effidency, RAM effidency, Traceability, Safety precaution) E i
0 Check for blocks that have constrai The following parameters have been checked and confirmed with the recommended value
& ldentify questionable subsystem s |Parameter hlalue
/b Aldentify blocks that generate expe hon-nlined 5-functions off
0 ~ldentify questionable fixed-point [Suppress error status in real-time model data structure fon
@ Check for efficiency optimization pz MAT-fle logging pff
[GRT compatible call interface pff
[continuous time pff
jon-finite numbers pff
Bingle outputjupdate function fon
Minimize algebraic loop occurrences boff &

Do the same procedure for the remaining warnings if necessary based on individual model
configurations. In the case of this simple example it is not necessary to fix all warnings as they
are only there to prevent what could be future issues but not really simulation errors.

Once done here go back to the Configuration Parameters and change the "Check model before
generating code™ dropdown list to the "Off" setting in order to bypass the model advisor. Click
Apply then OK to save these changes then close the Configuration Parameters:

Code Generation Advisor

Prioritized objectives: Execution efficiency, ROM efficiency, RAM efficiency, ... I Set objectives ... I
Check model before generating code: |Off v] I Check model ... I
Generate code only I Generate code I

Right click on the Calc_Test_Model Subsystem and go to Code Generation > Build Subsystem.
If there are not conflicts the following window should appear. (NOTE: It is possible an error
message might pop-up due to an unset or incorrectly set configuration parameter option. This is
normal and can be easily fixed by changing the conflicting parameter):

4& Build code for Subsystern:Calc_Test_Model E'@
Fick tunable parameters
Yariable Mame Class StoraneClass
Egain intaz Inlined | M

b
Blocks using selected variahle
Elock Farent
| [
| v

Status
Selecttunable parameters and click Build

This window contains all workspace constants that are to be used in the generated code and offer
storage options for the generated code. In the case of this example the variable gain can be left as
"Inlined". Click on Build and the code generation process will start.

The code generation progress should be shown in the command window as seen below:

Command Window

(@) New to MATLAB? Watch this Video, see Demos, or read Getting Started.

LR e

Caching model source code

Writing source file

##% Writing header file
###% Writing header file

Writing header file
Writing source file

Writing header file
Writing source file

##4% Writing header file
Writing header file

Calc Test Model.c

Calc_Test Model private.h
Calc Test Model.h

Calc Test Model types.h
C:\Users\Jose\Desktop\Version Control\non version controlled\Simulink Tutori:

C:\Users\Jose\Desktop\Version Control\non version controlled\Simulink Tutori:
C:\Users\Jose\Desktop\Version Control\non version controlled\Simulink Tutori:

C:\Users\Jose\Desktop\Version Control\non version controlled\Simulink Tutori:
calc functions.h

If all goes well the following Code Generation Report should show up:

E Code Generation Report

Forward

Contents

Summary

Subsystem Report

Code Interface Report
Traceability Report

Static Code Metrics Report

Generated Files
[-1 Main file
ert main.c
[-1 Model files
Calc Test Model.c
Calc Test Model.h
Calc Test Model private.h
Calc Test Model types.h
[-]1 Subsystem files
calc functions.c

calc functions.h

[+] Shared Utility files (6)

Code Generation Report for
Calc_Test _Model

Summary

Code generation for model "Calc_Test_Model.mdl”.

Model version 1 1.18
Simulink Coder version : 8.1 (R2011b) 08-Jul-2011
C source code generated on : Fri Apr 13 17:21:05 2012

Configuration settings at the time of code generation: click to open
Code generation objectives:

Execution efficiency
ROM efficiency

RAM efficiency
Traceability

Safety precaution

L5 [= W LN

Validation result: Not run

ok | [Hep

From here the generated code can be evaluated and can also be traced back to the Simulink (Ref.
[2]) Model. For more information on the Code Generation Report consult the MATLAB (Ref.
[1]) help window.

Now on the current MATLAB (Ref. [1]) path there should be two folders called
Calc_Test_Model_ert_rtw and slprj respectively:

~

Mame Date modified Type
) Calc_Test_Model_ert_rtw 4/1372012 5:21 PM File folder
J slprj 4/13/2012 5:06 PM File folder
~53mulink Code Generation V3.docx 47132012 5:10 PM Microsoft (
|#| busdefines.m 4/5/2012 3:35 PM M File
|| Cale_Test_Model_sfun.rmexnbd 4/13/2012 5:20 PM MEXWEL F
|#, CodegenT_Model.mdl 4/10/2012 10:23 PM MDL File

These folders contain all the generated code from the Simulink (Ref. [2]) Model; copy and paste
these folders to any desired location for the next section of the tutorial where the code will be
compiled and executed.

8. Compiling and Executing generated code

Now that the code is generated the next step is to test the code by compiling it and creating an
executable to run it. For this section of the tutorial a C IDE and compiler are required. This
tutorial will use Bloodshed Software’s Dev-C++ IDE [2] but these steps can be done in any IDE
with any compiler. Dev-C++ (Ref. [3]) can be downloaded from Bloodshed Software’s webpage:
http://www.bloodshed.net/download.html

e - e B 5 SoptadShes = @it s Gk = @ Hor MSFE it O,

Providing Free Software to the internet community

|

T [ket SAEIENT

Download the Dev-C++ (Ref. [3]) setup and install it by following the on-screen prompts:

§ Dev-C++ 5 beta 9 release (4.9.9.2) o] |

License Agreement =
Flease review the license terms before installing Dew-C++ 5 beta 9 release §4.9,9.2), (;7

Press Page Down to see the rest of the agreement,

“londshed Dev-C++ is distribubed under the GNU General Public License, i’
B sure to read it before using Dew-C++.

GhU GEMERAL PUBLIC LICEMSE
Wersion 2, June 1991
Copyright {3 1989, 1991 Free Software Foundation, Inc,
675 Mass Ave, Cambridge, Ma 02139, USA

Everyone is permitted to copy and diskribuke verbatim copies
of this license document, buk changing it is not allowed, LI

If wou accept the terms of the agreement, click I Agree to continue, Wou musk accept the
agreemeant ko install Dev-C++ 5 beta 9 release (4.9.9.2),

Iullsaft Install System «2.0

I dgree I Zancel

Once finished with the installation open up the Dev-C++ (Ref. [3]) IDE:

=l31x]

Flo Edt sewch Wew Pramc Execite Debup Tk 5 Windew Hep
g 0nws 8|~~|BRB|0|a40
SEEEY || P@| Ovew @lrset Frosge Meon |

r__ = H
Pusect | Classes | Detusg |

B3 Conpter | @l Recouce: |l Campis Log | &7 Dabug| (G FinResue |

[Res

Go to the top toolbar then go to File > New > Project, afterwards select the following options:
Empty Project, check C Project and Name the project Calc_Test_Generated_Model:

I)

Mew project @
| Basic |

2 8 = @

Windows Conzole Static Library DLL Empty Project
Application Application

Drescription:
A empty project

Project options:

M armne:; {* C Project (™ Ca+ Project
Calc_Test_Generated_todel [Make Default Language
\/ Ok x Cancel | ? Help |

Click on Ok and a Prompt will come up asking for a location to save the project. Choose any
desired location. (NOTE: It is recommended to create a new folder for this project)

After creating the project the left hand tab will contain a root folder with the name of the project.
This is where all source code will be located:

i pev-c++ 49092
File Edit 5Search VYiew Project B

O™
a8 O @88 ?7® L
|

Froject |Elasses| Debug]
Calc_Test_Generated_Model

Now drag the copies of the Calc_Test Model ert rtw and the slprj folders into the
Calc_Test_Generated_Model project folder in the previously selected location:

BN (EeR (=)
— 1
U@vl ;v Calc_Test_Generated_Model » - |¢7| | Search Cal.. 0
Organize * = Open Include in library » Share with « Burn Mew folder =+ [0 IZ@ZI
i -
¢ Eavorites i MName Date modified Type Size
; PR Desktop E , Calc_Test_Model_ert_rtw 41372012 5:21 PM File folder
4 Downloads . slpry 4/13/2012 5:06 PM File folder

Next go to the top toolbar then go to Project > Project Options then in the Pop Up window go to
the Directories Tab then inside of it go to the Include Directories Sub Tab. Add the following
paths to the include directories: ".\Calc_Test_Model _ert rtw" and ".\slprj\ert\ sharedutils"”
(NOTE: replace the dot with the absolute path to the Calc_Test Generated_Model folder):

Project Options @

| Directories |

| Include Directories |

C:h\Uzers'JozetDeskiop\Calc_Test_Generated Model\Calc_Test_Model_ert_tw
C:Azers\JosehDeskiophCalc_Test_Generated bodelslprisert,_sharedutilz

KIE

‘ | Delete Invalid |

x Cancel ‘ ? Help ‘

Right click on the Calc_Test_Generated_Model folder on the left hand tab and then click on
"Add Folder" call the folder Calc_Test then click OK:

Add folder

(3]

Enter the new folder's name:

-

|EaI|:_T el

o]

Cancel

Add an additional folder to the top folder called utilities:

Right click on Calc_Test and then click on

File Edit 5earch

kid Dev-C++ 4992 - [Calc_Test_Gene

View Project E

9& O

oo O @ 88

=
7@ L

Project | Elassesl DEbUEIl

=R Cale_Test_Generated_Model
o] Cale Test

] utilities

"Add to

project”. Browse to the

Calc_Test_Model_ert_rtw folder then add all .c and .h files excluding the ert_main.c. Repeat this
for the utilities folder by going to slprj\ert_sharedutils. Finally right click on the top
Calc_Test_Generated Model folder and add the ert_main.c from the Calc_Test Model_ert_rtw

folder:

E Open File

k &
. B
Recent Places

Desktop
u=nll
Libraries
Computer
i
w

Networlk

Look in: |

Calc_Test_Model_ert_rtw

MName
. html
‘ calc_functions.h
i Calc_Test_Madel.h
‘-L Calc_Test_Model_private.h
‘-L Calc_Test Model_types.h
‘é calc_functions.c
‘é Calc_Test_Model.c
‘.é ert_main.c
Fbuildnfo
Ej codelnfo
L Calc_Test_Meodel.mk
|| Cale_Test_ Model_ref.rsp

defines.bd
4 n

ck B
Date modified
4/13/2012 5:21 PM
4/13/2012 5:21 PM
4/13/2012 5:21 PM
4/13/2012 5:21 PM
4/13/2012 5:21 PM
4/13/2012 5:21 PM
4/13/2012 5:21 PM
4/13/2012 5:21 PM
4/13/2012 5:21 PM
4/13/2012 5:21 PM
4/13/2012 5:21 PM
4/13/2012 5:21 PM
4/13/2012 5:21 PM

=

==

"

Type
File fol
C Heax
C Heaq
CHea(_
CHea(
C Sour
C Sour
C Sour
Micros
Micros
MIECFili
RSP Fil
Tme S

File name |"calc_fun|:1imns h

" "Calc_Test_Model h" "Calc_ﬂ

Flles of type: | Allfiles =2

=

Cpen
Cancel

After adding everything the folders should contain the following:

fd Dev-C++ 4992 - [Calc_Test_Gener
File Edit Search View Project E

e
5o O @ 58 7@ L

Froject | Clazzes] Debug l

E--@ |
E|-- Calc_Test

----- : calc_funchions.c

----- cale_functions.h

----- || Calc_Test_kModel.c

----- Calc_Test_kodelh

----- Calc_Test_Model private.b
----- | | Calc_Test Model_types h
=] utiities

----- rul_z32_s32 332 satc
----- || mul_s32_s32_532_sath
----- L mul_wide_s32 .o

----- L mul_wide_s32.h

----- || rhw_shared utils.h

----- || rhwtypesh

----- |:| ert_main.c

Go to the top toolbar then click on Execute > Compile & Run and if there are no problems the
following output should appear:

e

1| ChUsersh\Jose\Desktoph Calc_Test_Generated_Model\Calc_Test_Generated Model.exe = [=[=] @

Yarning: The simulation will »un forever. Generated ERT main won’t simulate mode
1 step behavior. To change thisz behavior szelect the *MAT-file logging’ option.

Now that the code is up and running; open the ert_main.c and make the following modifications
to the main function:

#if0
printf("Warning: The simulation will run forever. "
"Generated ERT main won't simulate model step behavior. "
"To change this behavior select the '"MAT-file logging' option.\n");
fflush((NULL));
while (rtmGetErrorStatus(0) == (NULL)) {
/* Perform other application tasks here */
}
#else
int32_T Input A=1;

int32_T Input_B = 7;

while(1)

{
[* Pass input data */
Calc_Test_Model U _Input_A = Input_A;

Calc_Test_ Model _U_Input B = Input_B;
/* Run Subsystem */
Calc_Test_Model_step(&Calc_Test_ Model DWork, Calc_Test Model_U_Input_A,

Calc_Test_Model U Input B, &Calc_Test Model Y _Outl);

/* View Output */

printf("Input_A: %ld , Input_B: %ld\n\n"
"sum: %ld\n\n"
"sub: %ld\n\n"
"mul: %ld\n\n"
"div: %If\n\n"
"sum_gain: %ld\n\n"
Calc_Test_ Model U _Input_A,
Calc_Test_Model_U_Input_B,
Calc_Test_Model Y _Outl.sum,
Calc_Test_Model Y _Outl.sub,
Calc_Test_Model _Y_Outl.mul,
Calc_Test_ Model Y _Outl.div,

Calc_Test_Model_Y_Outl.sum_gain);

Input_A++;
Input_B++;
sleep(1000);
}
#endif

The modifications to the code add the Inputs A and B initialized to 1 and 2 respectively. Then an
infinite while loop is started. Inside this loop the Inputs are passed to their corresponding
structure elements located in the input variables for the model step function denoted by the U
(e.g. Calc_Test Model U Input_A), next the step function, denoted _step (e.g.
Calc_Test_Model_step) is called to run the model. After calling the step function the values are

now in the output data structure denoted by the Y (e.g.:Calc_Test Model_Y_Outl) and then
these can be accessed globally for any purpose.

The output data can then be viewed with the printf function as shown below:

1| ChUsersh\Jose\Desktoph Calc_Test_Generated_Model\Calc_Test_Generated Model.exe == @
» Input_B: &

iv: B.86060080
sum_gain: 18

Input_A:=: 5 ., Input_B: 6

iv: B.833333

sum_gain: 12

9. Comparing output of MATLAB with that of the generated code

Once the code is generated and running there is a couple of ways to determine if the output is
correct:

e Simple observation of the simulation output can be used in the case of simple calculations
as those carried out in this example.

e In the case of more complex calculations a text file can be generated and plotted to
compare to output data from the simulation model.

e Text files can be loaded into MATLAB (Ref. [1]) then the difference between these two
files can be plotted showing differences in output for each sample.

References
Computer Software

[1] MATLAB, The MathWorks, Inc., Software Package, Ver. R2011b, Natick, Massachusetts,
2011,

[2] Simulink, The MathWorks, Inc., Software Package, Ver. R2011b, Natick, Massachusetts,
2011,

[3] Dev-C++, Bloodshed Software, Software Package, Ver. 5, 2005.

Generic

Appendix A Hardware Implementation Table

Unspecified
(assume 32-

bit Generic)
(default)

8

16

32

32

32

Unspecifie
d

X

Set

Custom

16-bit
Embedded
Processor

16

16

32

16

Set

32-bit
Embedded
Processor

16

32

32

32

Set

32-bit Real
Time
Simulator

8

16

32

32

32

Set

32-bit Xx86

16

32

32

32

Little

Zero

Set

compatible Endian
8-bit 8 |16 |16 32 8 X X X Set
Embedded
Processor
MATLAB 8 |16 |32 Host |Host |x X Little Set
Host specifi | specifi Endian
Computer ¢ value c value
(32 or (32 or
64) 64)
AMD
K5/K6/Athlo |8 16 |32 32 32 X X Little Set
n Endian
ARM Compatible
ARM 8 16 32 32 32 Lon |Float |x X
7/8/9/10 g
ARM 11 8 |16 |32 32 32 Lon |Doubl x X

ARM Cortex '8 16 |32 32 32 Char None X X X

ASIC/FPGA

ASIC/IFPGA 'NA NA [N NA NA NA ' NA NA NA NA

A

Analog Devices

Blackfin 8 16 32 32 32 Lon | Doubl |Little Zero | Set
g e Endian

SHARC 32 32 |32 32 32 Lon | Doubl BigEndian Zero | Set
g e

TigerSHARC 132 32 |32 32 32 Lon | Doubl |Little Zero | Set
g e Endian

Atmel

AVR 8 16 |16 32 8 X X Little Zero | Set

Endian

Freescale

32-bit 16 |32 32 32 Lon Doubl BigEndian Zero |Set
PowerPC g e

68332 16 |32 32 32 X X Big Endian | x Set
68HCO08 16 |16 32 8 X X Big Endian | x Set
68HC11 16 |16 32 8 X X Big Endian | x Set
ColdFire 16 32 32 32 X X Big Endian ' Zero | Set
DSP563xx 16 16 32 16 X X X X Set
(16-bit mode)

HC(S)12 16 16 32 16 X X Big Endian ' x Set
MPC52xx, 16 32 32 32 Lon |Doubl x Zero | Set
MPC5500, g e

MPC55xx,

MPC5xX,

MPC7400,

MPC7xxX,

MPC82xx,

MPC83xXx,

MPC86xX,

MPC8xx

MPC85xx 8 16 32 32 32 Lon Float |x Zero Set

g

S12x 8 16 |16 32 16 X X Big Endian | x Set

Infineon

Cl6x, XC16x 8 16 |16 32 16 X X Little Zero Set
Endian

TriCore 8 16 32 32 32 X X Little X Set
Endian

Intel

8051 8 16 |16 |32 8 X X X X Clea

Comepatible r

x86/Pentium |8 16 |32 |32 32 X X Little X Set
Endian

Microchip

PIC18 16 |16 |32 8 Little Zero Set
Endian

dsPIC 16 |16 |32 16 Little Zero Set
Endian

NEC

V850 16 32 32 32 X X X

Renesas

M16C 16 16 32 16 Little X X
Endian

M32C 16 |x |32 X Little X X
Endian

R8C/Tiny 16 |16 32 16 Little X X
Endian

SH-2/3/4 16 32 32 32 X X X

SGI

UltraSPARC |8 16 |32 32 32 X X Big Endian | x Set

i

STMicroelectronics

ST10/Superl 8 16 |16 32 16 X X Little Zero | Set

0 Endian

Texas Instruments

C2000 16 |16 16 |32 16 Int |None |Xx Zero Set

C5000 16 16 16 32 16 Int 'None |BigEndian Zero | Set

C6000 8 16 |32 |40 32 Int |None |Xx Zero Set

MSP430 8 16 16 32 16 X X Little Zero Set
Endian

TMS470 8 16 32 32 X X X X X X

Table 2: Hardware Implementation Complete

